BCA-12

B.C.A. DEGREE EXAMINATION — JUNE, 2018.

COMPUTER ORIENTED NUMERICAL METHODS

Time: 3 hours Maximum marks: 75

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

- 1. Write a program to implement secant method.
- 2. Write a program to implement Regula-Falsi method.
- 3. Write a program to implement Gauss-Seidal method for finding the roots of linear equations.
- 4. In the following table, use the Newton Interpolation formula to find :
 - (a) f(2.4)
 - (b) f(8.7)

x: 2 4 6 8 10

f(x): 9.68 10.96 12.32 13.76 15.28

- 5. Find the least-squares approximation of $f(x) = x^{1/3}$ on [0,1] by a polynomial of degree at most.
- 6. Using Lagrange's interpolation formula find a second degree polynomial which passes through the points (0, 0), (1, 1) and (2, 20).
- 7. Solve using Euler's method $\frac{dy}{dx} = \sin(x + y) e^x \cdot y(0) = 4.$

PART B —
$$(5 \times 10 = 50 \text{ marks})$$

Answer any FIVE questions.

- 8. Use the Newton method to find the smallest and the second smallest positive roots of the equation $\tan x = 4x$, correct to 4 decimal places.
- 9. Solve the following system by using the Gauss-Jordan elimination method:

$$x + y + z = 5$$
$$2x + 3y + 5z = 8$$
$$4x + 5z = 2.$$

10. Use the Gauss Seidal method to solve the system:

$$4x_1 + x_2 - x_3 = 3$$

$$2x_1 + 7x_2 + x_3 = 19$$

$$x_1 - 3x_2 + 12x_3 = 31.$$

2 **UG-732**

- 11. Derive the Newton's forward interpolation formula with example.
- 12. Using Lagrange's interpolation formula, find from the following table :

$$x: 0 2 4 6$$

 $y: -3 5 21 45$

- 13. Evaluate $\int_{-3}^{3} x^4 dx$ by using:
 - (a) Trapezoidal
 - (b) Simpson's.

Rule and verify your results by actual integration.

14. Using RK of order 4 to solve the following, using a step size of h = 0.1 for

$$0 \le x \le 1 \frac{dy}{dx} = \frac{5x^2 - y}{e^{x+y}} y(0) = 1.$$

3