UG-656 BMS 32/BMC 32

B.Sc. DEGREE EXAMINATION — JUNE 2018.

Third Year

Mathematics

LINEAR ALGEBRA AND BOOLEAN ALGEBRA

Time: 3 hours Maximum marks: 75

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

- 1. Let R⁺ be the set of all positive real numbers. Define addition and scalar multiplication as follows:
 - (a) u + v = uv for all $u, v \in \mathbb{R}^+$
 - (b) $au = u^{\alpha}$ for all $u \in R^+$ and $\alpha \in R$. Prove that R^+ is a real vector space.
- 2. Show that the mapping $T: V_2(R) \to V_3(R)$ defined by T(a,b) = (a+b,a-b,b) is a linear transformation.

- 3. Let V be a vector space over a field F. Show that any subsets of V containing the zero vector is linearly independent.
- 4. Show that every linearly independent subset of a finite dimensional vector space *V* forms a part of a basis.
- 5. Let $S = \{v_1, v_2, \dots, v_n\}$ be an orthogonal set of non zero vectors in an inner product space V. Show that S is linearly independent.
- 6. Let f be the bilinear form defined on $V_2(R)$ by $f(x, y) = x_1y_1 + x_2y_2$ where $x = (x_1, x_2)$ and $y = (y_1, y_2)$. Find the matrix of f with respect to the standard basis $\{e_1, e_2\}$.
- 7. Define partial order relation on a set and give an example. Further check whether the relation 'a divides b' is a partial order on the set *Z* of integers.
- 8. Prove that any distributive lattice L is a modular lattice.

PART B —
$$(5 \times 10 = 50 \text{ marks})$$

Answer any FIVE questions.

9. State and prove fundamental theorem of vector space homomorphism.

2 **UG-656**

- 10. Let V be a vector space over a field F. Let $S,T\subseteq V$. Prove that
 - (a) $S \subseteq T \Rightarrow L(S) \subseteq L(T)$
 - (b) L(SUT) = L(S) + L(T)
- 11. Let V and W be vector spaces over a field F. Let $T: V \to W$ be an isomorphism. Prove that T maps a basis of V onto a basis of W.
- 12. Let V and W be two finite dimensional vector space over a field F. Let $\dim V = m$ and $\dim W = n$. Show that L(V, W) is a vector space of dimension mn over F.
- 13. Apply Gram Schmidt process to construct an orthonormal basis for $V_3(R)$ with the standard inner product for the basis $\{v_1,v_2,v_3\}$. where $v_1=\{1,0,1\}$. $v_2=\{1,3,1\}$ and $v_3=\{3,2,1\}$.
- 14. Show that the set of all bilinear forms on a vector space V is also a vector space over F.

3 **UG-656**

- 15. Reduce the quadratic form $x_1^2+4x_1x_2+4x_1x_3+4x_2^2+16x_2x_3+4x_3^2 \qquad \text{to} \quad \text{the}$ diagonal form.
- 16. (a) Let B be a Boolean algebra. Show that $(a\vee b)'=a'\wedge b', (a\wedge b)'=a'\vee b' \text{ and } (a')'=a.$
 - (b) In a Boolean algebra if a $a \lor x = b \lor x$ and $a \lor x' = b \lor x'$ Show that a = b.

4

UG-656