UG-656 BMS 32/BMC 32

B.Sc. DEGREE EXAMINATION JUNE 2018.

Third Year
Mathematics
LINEAR ALGEBRA AND BOOLEAN ALGEBRA
Time : 3 hours
Maximum marks : 75
PART A $-(5 \times 5=25$ marks $)$
Answer any FIVE questions.

1. Let R^{+}be the set of all positive real numbers. Define addition and scalar multiplication as follows:
(a) $u+v=u v$ for all $u, v \in \mathrm{R}^{+}$
(b) $\quad \alpha u=u^{\alpha}$ for all $u \in R^{+}$and $\alpha \in R$.

Prove that R^{+}is a real vector space.
2. Show that the mapping $T: V_{2}(R) \rightarrow V_{3}(R)$ defined by $\quad T(a, b)=(a+b, a-b, b) \quad$ is a linear transformation.
3. Let V be a vector space over a field F. Show that any subsets of V containing the zero vector is linearly independent.
4. Show that every linearly independent subset of a finite dimensional vector space V forms a part of a basis.
5. Let $S=\left\{v_{1}, v_{2}, \ldots \ldots . . v_{n}\right\}$ be an orthogonal set of non - zero vectors in an inner product space V. Show that S is linearly independent.
6. Let f be the bilinear form defined on $V_{2}(R)$ by $f(x, y)=x_{1} y_{1}+x_{2} y_{2}$ where $\quad x=\left(x_{1}, x_{2}\right) \quad$ and $y=\left(y_{1}, y_{2}\right)$. Find the matrix of f with respect to the standard basis $\left\{e_{1}, e_{2}\right\}$.
7. Define partial order relation on a set and give an example. Further check whether the relation 'a divides b' is a partial order on the set Z of integers.
8. Prove that any distributive lattice L is a modular lattice.

PART B - $(5 \times 10=50$ marks $)$
Answer any FIVE questions.
9. State and prove fundamental theorem of vector space homomorphism.
10. Let V be a vector space over a field F. Let $S, T \subseteq V$. Prove that
(a) $\quad S \subseteq T \Rightarrow L(S) \subseteq L(T)$
(b) $\quad L(S U T)=L(S)+L(T)$
11. Let V and W be vector spaces over a field F . Let $T: V \rightarrow W$ be an isomorphism. Prove that T maps a basis of V onto a basis of W.
12. Let V and W be two finite dimensional vector space over a field F. Let $\operatorname{dim} V=m$ and $\operatorname{dim} W=n$. Show that $L(V, W)$ is a vector space of dimension $m n$ over F.
13. Apply Gram - Schmidt process to construct an orthonormal basis for $V_{3}(R)$ with the standard inner product for the basis $\left\{v_{1}, v_{2}, v_{3}\right\}$. where $v_{1}=\{1,0,1\} . v_{2}=\{1,3,1\}$ and $v_{3}=\{3,2,1\}$.
14. Show that the set of all bilinear forms on a vector space V is also a vector space over F.
15. Reduce the quadratic form
$x_{1}^{2}+4 x_{1} x_{2}+4 x_{1} x_{3}+4 x_{2}^{2}+16 x_{2} x_{3}+4 x_{3}^{2} \quad$ to the diagonal form.
16. (a) Let B be a Boolean algebra. Show that $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime},(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}$ and $\left(a^{\prime}\right)^{\prime}=a$.
(b) In a Boolean algebra if a $a \vee x=b \vee x$ and $a \vee x^{\prime}=b \vee x^{\prime}$ Show that $a=b$.

