M.Sc. DEGREE/P.G. DIPLOMA

EXAMINATION - JUNE, 2018.

First Year

Mathematics
ALGEBRA
Time: 3 hours Maximum marks : 75

SECTION A - ($5 \times 5=25$ marks $)$
Answer any FIVE questions.

1. Let G be a group in which $(a b)^{m}=a^{m} b^{m}$ for three consecutive integers and for all $a, b \in G$. Prove that G is abelian.
2. Prove that the subgroup N of G is a normal subgroup of G if and only if every left coset of N in G is a right coset of N in G.
3. Prove that a finite integral domain is a field.
4. If U, V are ideals of R, let $U+V=\{u+v: u \in U, v \in V\}$. Prove that $U+V$ is also an ideal of R.
5. If V is a finite-dimensional space over F, prove that any two bases of V, have the same number of elements.
6. If V is a vector space and $u, v \in V$, then prove that $|(u, v)| \leq\|u\|\|v\|$.
7. If L is a algebraic extension of K and if K is an algebraic extension of F, then prove that L is an algebraic extension of F.
8. If V is finite-dimensional over F, prove that $T \in A(V)$ is regular if and only if T maps V onto V.

SECTION B - $(5 \times 10=50$ marks $)$
Answer any FIVE questions.
9. State and prove first part of Sylow's theorem.
10. State and prove Cayley's theorem.
11. If R is a ring with unit element, then for all $a, b \in R$ prove that
(a) $\quad a .0=0 . a=0$
(b) $\quad a(-b)=(-a) b=-(a b)$
(c) $(-a)(-b)=a b$
(d) $(-1) a=-a$
(e) $\quad(-1)(-1)=1$.
12. Prove that every integral domain can be imbedded is a field.
13. If $v_{1}, v_{2}, \ldots, v_{n}$ is a basis of V over F and if $w_{1}, w_{2}, \ldots w_{m}$ in V are linearly independent over F, prove that $m \leq n$.
14. If V and W are of dimensions m and n respectively over F, then prove that $\operatorname{Hom}(V, W)$ is of dimensions $m n$ over F.
15. If F is of characteristic 0 and if a, b are algebraic over F, then prove that there exist an element $c \in F(a, b)$ such that $F(a, b)=F(c)$.
16. If $T \in A(V)$ has all its characteristic roots is F, then prove that there is a basis of V is which the matrix of T is triangular.

