PG-390	MMS-18

M.Sc. DEGREE EXAMINATION -

JUNE, 2018.
First Year
Mathematics

MATHEMATICAL STATISTICS

Time: 3 hours
Maximum marks : 75
PART A - $(5 \times 5=25 \mathrm{marks})$
Answer any FIVE questions.

1. Let X have the probability density function $f(x)=\left\{\begin{array}{cc}\frac{x+1}{2}, & -1<x<1 \\ 0, & \text { elsewhere }\end{array}\right.$. Find the mean and variance.
2. Let X have the probability density function $f(x)=\left\{\begin{array}{ll}\frac{x^{2}}{9}, & 0<x<3 \\ 0, & \text { elsewhere }\end{array}\right.$. Find the probability density function of $Y=X^{3}$.
3. Let X equal the length of life of 60 watt light bulb marketed by a certain manufacturer of light bulbs. Assume that the distribution of X is $N(\mu, 1296)$. If a random sample of $n=27$ bulbs were tested until they burned out, yielding a sample mean of $\bar{X}=1478 \mathrm{hrs}$. Find the 95% confidence interval for μ.
4. Let X be a random variable having the probability density function $f(x, \theta)=\left\{\begin{array}{cc}\frac{1}{\theta} e^{-x / \theta}, & 0<x<\infty \\ 0, & \text { elsewhere }\end{array}\right.$. Test the simple hypothesis $H_{0}: \theta=2$ against the alternative simple hypothesis $H_{1}: \theta=4$, use a random sample X_{1}, X_{2} of size $n=2$ and define the critical region $C=\left\{\left(x_{1}, x_{2}\right) / 9.5 \leq x_{1}+x_{2}<\infty\right\}$. Also find the power of the test.
5. Let $X_{1}, X_{2}, \ldots X_{n}$ denote a random sample from a poisson distribution, that has the mean $\theta>0$. Prove that \bar{X} is an efficient estimator of θ.
6. Find $P_{r}\left(0<X_{1}<1 / 3,0<X_{2}<1 / 3\right)$, if the random variables X_{1} and X_{2} have the joint probability density
function
$f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cl}4 x_{1}\left(1-x_{2}\right), & 0<x_{1}<1, \\ 0 & 0<x_{2}<1 \\ \text { elsewhere } .\end{array}\right.$
7. Let \bar{X} denote the mean of a random sample of size 128 from a gamma distribution with $\alpha=2$ and $\beta=4$. Find $P_{r}(7<\bar{X}<9)$.
8. Let $X_{1}, X_{2}, \ldots X_{n}$ denote the observations of a random sample of size $n>1$ from a distribution that is $b(1, \theta), 0<\theta<1$. Let $Y=\sum_{i=1}^{n} X_{i}$. Find the unbiased and minimum variance estimator of Y / n.

PART B - $(5 \times 10=50$ marks $)$
Answer any FIVE questions.
9. Find the moment generating function of Gamma distribution and also find its mean and variance.
10. Let X_{1}, X_{2} be a random sample from the normal distribution $n(0,1)$. Show that the marginal probability density function of $Y=\frac{X_{1}}{X_{2}}$ is the Cauchy probability density function.
11. Let two random samples, each of size 10 , from two independent normal distributions $n\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $n\left(\mu_{2}, \sigma_{2}^{2}\right) \quad$ yield $\quad \bar{x}=4.8, s_{1}^{2}=8.64, \quad \bar{y}=5.6$, $s_{2}^{2}=7.88$. Find a 95% confidence interval for $\mu_{1}-\mu_{2}$.
12. State and prove Rao-Blackwell theorem.
13. Let X has a probability density function
$f(x, \theta)=\left\{\begin{array}{cc}\theta^{x}(1-\theta)^{1-x}, & x=0,1 \\ 0, & \text { elsewhere }\end{array} \quad\right.$ Using sequentially probability ratio test, test the hypothesis $H_{0}: \theta=1 / 3$ and $H_{1}: \theta=2 / 3$.
14. Let X and Y have bivariate normal distribution with parameters $\mu_{1}=3, \mu_{2}=1, \sigma_{1}^{2}=16, \sigma_{2}^{2}=25$ and $p=3 / 5$. Determine the following.
(a) $\quad P_{r}(3<Y<8)$
(b) $\quad P_{r}(3<Y<8 / X=7)$
(c) $\quad P_{r}(-3<X<3)$
(d) $\quad P_{r}(-3<X<3 / Y=-4)$.
15. Let Z_{n} be $\psi^{2}(n)$. Find the limiting distribution of the random variable $Y_{n}=\frac{Z_{n}-n}{\sqrt{2 n}}$.
16. Let $X_{1}, X_{2}, X_{3},,,, X_{n}$ be a random sample from the exponential distribution with probability density function $f(x, \theta)=1 / \theta^{-x / \theta}, 0<x<\infty$, $\theta \in \Omega=\{\theta / 0<\theta<\infty\}$. Find the maximum likelihood estimator for θ.

