MMS-18

M.Sc. DEGREE EXAMINATION — JUNE, 2018.

First Year

Mathematics

MATHEMATICAL STATISTICS

Time: 3 hours Maximum marks: 75

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

- 1. Let X have the probability density function $f(x) = \begin{cases} \frac{x+1}{2}, & -1 < x < 1 \\ 0, & \text{elsewhere} \end{cases}$. Find the mean and variance.
- 2. Let X have the probability density function $f(x) = \begin{cases} \frac{x^2}{9}, & 0 < x < 3 \\ 0, & \text{elsewhere} \end{cases}$ density function of $Y = X^3$.

- 3. Let X equal the length of life of 60 watt light bulb marketed by a certain manufacturer of light bulbs. Assume that the distribution of X is $N(\mu,1296)$. If a random sample of n=27 bulbs were tested until they burned out, yielding a sample mean of $\overline{X}=1478\,$ hrs. Find the 95% confidence interval for μ .
- 4. Let X be a random variable having the probability density function $f(x,\theta) = \begin{cases} \frac{1}{\theta} e^{-x/\theta}, & 0 < x < \infty \\ 0, & \text{elsewhere} \end{cases}$. Test the simple hypothesis $H_0: \theta = 2$ against the alternative simple hypothesis $H_1: \theta = 4$, use a random sample X_1, X_2 of size n = 2 and define the critical region $C = \{(x_1, x_2)/9.5 \le x_1 + x_2 < \infty\}$. Also find the power of the test.
- 5. Let $X_1, X_2, ... X_n$ denote a random sample from a poisson distribution, that has the mean $\theta > 0$. Prove that \overline{X} is an efficient estimator of θ .
- 6. Find $P_r(0 < X_1 < \frac{1}{3}, 0 < X_2 < \frac{1}{3})$, if the random variables X_1 and X_2 have the joint probability density function

$$f(x_1, x_2) = \begin{cases} 4x_1(1 - x_2), & 0 < x_1 < 1, \\ 0 < x_2 < 1, \\ 0 & \text{elsewhere.} \end{cases}$$

2 **PG-390**

- 7. Let \overline{X} denote the mean of a random sample of size 128 from a gamma distribution with $\alpha=2$ and $\beta=4$. Find $P_r\big(7<\overline{X}<9\big)$.
- 8. Let $X_1, X_2, ... X_n$ denote the observations of a random sample of size n>1 from a distribution that is $b(1,\theta), 0<\theta<1$. Let $Y=\sum_{i=1}^n X_i$. Find the unbiased and minimum variance estimator of Y/n.

PART B —
$$(5 \times 10 = 50 \text{ marks})$$

Answer any FIVE questions.

- 9. Find the moment generating function of Gamma distribution and also find its mean and variance.
- 10. Let X_1, X_2 be a random sample from the normal distribution n(0,1). Show that the marginal probability density function of $Y = \frac{X_1}{X_2}$ is the Cauchy probability density function.
- 11. Let two random samples, each of size 10, from two independent normal distributions $n(\mu_1, \sigma_1^2)$ and $n(\mu_2, \sigma_2^2)$ yield $\overline{x} = 4.8, s_1^2 = 8.64$, $\overline{y} = 5.6$, $s_2^2 = 7.88$. Find a 95% confidence interval for $\mu_1 \mu_2$.
- 12. State and prove Rao-Blackwell theorem.

3 **PG-390**

13. Let X has a probability density function

$$f(x,\theta) = \begin{cases} \theta^x (1-\theta)^{1-x}, & x=0,1\\ 0, & \text{elsewhere} \end{cases}. \qquad \text{Using}$$
 sequentially probability ratio test, test the hypothesis $H_0: \theta=1/3$ and $H_1: \theta=2/3$.

- 14. Let X and Y have bivariate normal distribution with parameters $\mu_1=3$, $\mu_2=1,\sigma_1^2=16,\sigma_2^2=25$ and p=3/5. Determine the following.
 - (a) $P_r(3 < Y < 8)$
 - (b) $P_r(3 < Y < 8/X = 7)$
 - (c) $P_r(-3 < X < 3)$
 - (d) $P_r(-3 < X < 3/Y = -4)$.
- 15. Let Z_n be $\psi^2(n)$. Find the limiting distribution of the random variable $Y_n = \frac{Z_n n}{\sqrt{2n}}$.
- 16. Let $X_1, X_2, X_3, ..., X_n$ be a random sample from the exponential distribution with probability density function $f(x,\theta) = \frac{1}{\theta} e^{-x/\theta}, 0 < x < \infty,$ $\theta \in \Omega = \{\theta/0 < \theta < \infty\}$. Find the maximum likelihood estimator for θ .

4 **PG-390**