MMS-16

M.Sc. DEGREE EXAMINATION – DECEMBER, 2018.

First Year

Mathematics

REAL ANALYSIS

Time: 3 hours Maximum marks: 75

SECTION A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

- 1. State and prove Schwarz inequality.
- 2. Prove that the set E is open if and only if its compliment is closed.
- 3. Prove that a mapping f of a metric space X in to a metric space Y is continuous on X if and only if $f^{-1}(V)$ is open in X for every open set Y in Y.
- 4. Let f be defined on [a, b]; if f has a local maximum at a point $x \in (a, b)$ and if f'(x) exists then prove that f'(x) = 0.

- 5. If P* is a refinement of P, then prove that $L(P, f, \alpha) \le L(P^*, f, \alpha)$.
- 6. State and prove Cauchy criterion for uniform convergence.
- 7. Establish the relation between Gamma function and beta function.
- 8. Prove that a linear operator A on a finite dimensional vector space X is one-to-one if and only if the range of A is all of X.

SECTION B —
$$(5 \times 10 = 50 \text{ marks})$$

Answer any FIVE questions.

- 9. Prove that every k-cell is compact.
- 10. State and prove root test.
- 11. Let *f* be a continuous mapping of a compact metric space X in to a metric space Y, then prove that *f* is uniformly continuous on X.
- 12. State and prove Taylor's theorem.
- 13. Prove that $f \in R(\alpha)$ on [a,b] if and only if for every $\varepsilon > 0$ there exist a partition P such that $U(P, f, \alpha) L(P, f, \alpha) < \varepsilon$.

2

PG-375

- 14. Prove that there exists a real continuous function on the real line is nowhere differentiable.
- 15. Derive Stirling's formula.

16. State and prove inverse function theorem.

3

PG-375