M.Sc. DEGREE EXAMINATION JUNE, 2018.

Second Year
Mathematics

DIFFERENTIAL EQUATIONS

Time: 3 hours
Maximum marks : 75
PART A - ($5 \times 5=25$ marks $)$
Answer any FIVE questions.

1. Let a_{1}, a_{2} be constants and consider the differential equation $L(y)=y^{\prime \prime}+a_{1} y^{\prime}+a_{2} y=0$. If r_{1}, r_{2} are the distinct roots of the characteristic polynomial p where $p(r)=r^{2}+a_{1} r+a_{2}$ then prove that the function ϕ_{1}, ϕ_{2} defined by $\phi_{1}(x)=e^{r_{1} x}$ and $\phi_{2}(x)=e^{r_{2} x}$ are the solutions of the differential equation $L(y)=0$.
2. Define Wronskian. Verify whether the functions $\phi_{1}(x)=e^{x}$ and $\phi_{2}(x)=e^{-x}$ are independent or not.
3. Prove that for any ' n ', the coefficient of x^{n} in $P_{n}(x)$ is $\frac{(2 n)!}{2^{n}(n!)^{2}}$.
4. Let $f(x)$ be periodic with period w. Let A be an $n \times n$ constant matrix. Then prove that a solution of $y^{\prime}=A y+f(x)$ is periodic of period w if and only if $y(0)=y(w)$.
5. Let f be continuous and satisfy a Lipschitz condition on a rectangle $R:\left|x-x_{0}\right| \leq a$, $\left|y-y_{0}\right| \leq b(a, b>0)$. If ϕ and φ are solutions of the initial value problem $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$ on an interval I containing x_{0}, then prove that $\phi(x)=\varphi(x)$ for all $x \in I$.
6. Solve $\frac{\partial^{4} z}{\partial x^{4}}+\frac{\partial^{4} z}{\partial y^{4}}=\frac{\partial^{4} z}{\partial x^{2} \partial y^{2}}$.
7. Reduce the equation $\frac{\partial^{2} z}{\partial x^{2}}+2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=0$ into its canonical form.
8. Define :
(a) Boundary value problem.
(b) Interior and exterior Dirichlet problem.

$$
\text { PART B }-(5 \times 10=50 \text { marks })
$$

Answer any FIVE questions.
9. Let ϕ be any solution of $L(y)=y^{(n)}+a_{1} y^{(n-1)}+a_{2} y^{(n-2)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=0$ on an interval I containing a point x_{0}. Then prove that $\left\|\phi\left(x_{0}\right)\right\| e^{-k\left|x-x_{0}\right|} \leq\|\phi(x)\| \leq\left\|\phi\left(x_{0}\right)\right\| e^{k\left|x-x_{0}\right|}$ for all x in I where $\|\phi(x)\|=\left(|\phi(x)|^{2}+\left|\phi^{\prime}(x)\right|^{2}+\cdots+\left|\phi^{(n-1)}(x)\right|^{2}\right)^{1 / 2}$ and $k=\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right|$.
10. Find the solution of the Initial value problem $y^{\prime \prime}-2 y^{\prime}+y=2 x, y(0)=6, y^{\prime}(0)=2$.
11. Solve the Legendre equation using power-series technique.
12. Derive Bessel function of order ' n ' of second kind.
13. Let $A(x)$ be an $n \times n$ matrix which is continuous on a closed and bounded interval. Then prove that there exists a solution to the initial value problem $y^{\prime}=A(x) \cdot y, y\left(x_{0}\right)=x_{0},\left(x_{1}, x_{0} \in I\right)$ on I.
14. (a) Find a solution of $\left(D^{2}-D^{\prime}\right) z=2 y-x^{2}$.
(b) Classify the equation $u_{x x}+u_{y y}=u_{x y}$.
15. Discuss the method of solving hyperbolic equations.
16. State and prove Kelvin's Inversion theorem.

