M.Sc. DEGREE EXAMINATION — JUNE, 2018.

Second Year

Mathematics

DIFFERENTIAL EQUATIONS

Time: 3 hours Maximum marks: 75

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

- 1. Let a_1, a_2 be constants and consider the differential equation $L(y) = y'' + a_1 y' + a_2 y = 0$. If r_1, r_2 are the distinct roots of the characteristic polynomial p where $p(r) = r^2 + a_1 r + a_2$ then prove that the function ϕ_1, ϕ_2 defined by $\phi_1(x) = e^{r_1 x}$ and $\phi_2(x) = e^{r_2 x}$ are the solutions of the differential equation L(y) = 0.
- 2. Define Wronskian. Verify whether the functions $\phi_1(x) = e^x$ and $\phi_2(x) = e^{-x}$ are independent or not.

- 3. Prove that for any 'n', the coefficient of x^n in $P_n(x)$ is $\frac{(2n)!}{2^n(n!)^2}$.
- 4. Let f(x) be periodic with period w. Let A be an $n \times n$ constant matrix. Then prove that a solution of y' = Ay + f(x) is periodic of period w if and only if y(0) = y(w).
- 5. Let f be continuous and satisfy a Lipschitz condition on a rectangle $R:|x-x_0| \le a$, $|y-y_0| \le b$ (a,b>0). If ϕ and φ are solutions of the initial value problem $y'=f(x,y),\ y(x_0)=y_0$ on an interval I containing x_0 , then prove that $\phi(x)=\varphi(x)$ for all $x\in I$.
- 6. Solve $\frac{\partial^4 z}{\partial x^4} + \frac{\partial^4 z}{\partial y^4} = \frac{\partial^4 z}{\partial x^2 \partial y^2}$.
- 7. Reduce the equation $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$ into its canonical form.
- 8. Define:
 - (a) Boundary value problem.
 - (b) Interior and exterior Dirichlet problem.

2 **PG-394**

PART B —
$$(5 \times 10 = 50 \text{ marks})$$

Answer any FIVE questions.

- 9. Let ϕ be any solution of $L(y) = y^{(n)} + a_1 y^{(n-1)} + a_2 y^{(n-2)} + \dots + a_{n-1} y' + a_n y = 0$ on an interval I containing a point x_0 . Then prove that $\|\phi(x_0)\|e^{-k|x-x_0|} \le \|\phi(x)\| \le \|\phi(x_0)\|e^{k|x-x_0|}$ for all x in I where $\|\phi(x)\| = (\|\phi(x)\|^2 + \|\phi'(x)\|^2 + \dots + \|\phi^{(n-1)}(x)\|^2)^{1/2}$ and $k = |a_1| + |a_2| + \dots + |a_n|$.
- 10. Find the solution of the Initial value problem y'' 2y' + y = 2x, y(0) = 6, y'(0) = 2.
- 11. Solve the Legendre equation using power-series technique.
- 12. Derive Bessel function of order 'n' of second kind.
- 13. Let A(x) be an $n \times n$ matrix which is continuous on a closed and bounded interval. Then prove that there exists a solution to the initial value problem $y' = A(x) \cdot y$, $y(x_0) = x_0$, $(x_1, x_0 \in I)$ on I.

3 **PG-394**

- 14. (a) Find a solution of $(D^2 D')z = 2y x^2$. (7)
 - (b) Classify the equation $u_{xx} + u_{yy} = u_{xy}$. (3)
- 15. Discuss the method of solving hyperbolic equations.
- 16. State and prove Kelvin's Inversion theorem.

4

PG-394