UG-445 BMC-12/BMS-12

B.Sc. DEGREE EXAMINATION DECEMBER 2018.

First Year
Mathematics/Mathematics for Computer
Applications
TRIGNOMETRY, ANALYTICAL GEOMETRY (3D)
AND VECTOR CALCULUS
Time : 3 hours
Maximum marks : 75

PART A - ($5 \times 5=25$ marks $)$
Answer any FIVE questions.

1. Express $\cos 5 \theta$ interms of $\cos \theta$.
2. Prove that $\sinh ^{-1} x=\log _{e}\left(x+\sqrt{x^{2}+1}\right)$.
3. Find the angle between the planes $2 x-y+z=6$, $x+y+2 z=3$.
4. Find the equation of the plane parallel to $2 x-3 y+5 z+12=0$ and passing through the point $(2,3,1)$.
5. Find the equation of the sphere whose centre $(1,2,3)$ and radius is 4 units.
6. Find the equation of the sphere whose centre $(1,-3,4)$ and which passes through the point $(3,-1,3)$.
7. If $\phi=x^{2}+y^{2}-z-1$ find $\operatorname{grad} \phi$ at $(1,0,0)$.
8. If $\vec{F}=x^{2} \vec{i}+x y \vec{j}$ evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ from (0,0) to $(1,1)$ along the line $y=x$.

PART B - $(5 \times 10=50$ marks $)$
Answer any FIVE questions.
9. Show that $\frac{\sin 6 \theta}{\sin \theta}=32 \cos ^{5} \theta-32 \cos ^{3} \theta+6 \cos \theta$.
10. Separate into real and imaginary parts of $\tan (x+i y)$.
11. Find the image of the point $P(2,3,5)$ in the plane $2 x+y-z+2=0$.
12. Obtain the equation of the plane passing through the points $(2,2,-1),(3,4,2)$ and $(7,0,6)$.
13. Find the shortest distance between the lines
$\frac{x-8}{3}=\frac{y+9}{-16}=\frac{z-10}{7}$ and
$\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-15}{-5}$.
14. Find the equation of the sphere passing through the points $(1,0,-1),(2,1,0),(1,1,-1)$ and $(1,1,1)$.
15. Find $\nabla \cdot \vec{F}$ and $\nabla \times \vec{F}$ of the vector point function $\vec{F}=x z^{3} \vec{i}-2 x^{2} y z \vec{j}+2 y z^{4} \vec{k}$ at the point $(1,-1,1)$.
16. If $\vec{F}=3 x y \vec{i}-y^{3} \vec{j}$. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where C is the curve $y=2 x^{2}$ in the XY plane from $(0,0)$ to $(1,2)$.

