B.Sc. DEGREE EXAMINATION DECEMBER, 2019.

Third Year

Mathematics

LINEAR ALGEBRA AND BOOLEAN ALGEBRA

Time : 3 hours
Maximum marks : 75
SECTION A - ($5 \times 5=25$ marks $)$
Answer any FIVE questions.

1. Let V be a vector space over a field F. Prove that
(a) $\alpha 0=0$ for all $\alpha \in F$.
(b) $\quad 0 v=0$ for all $v \in V$.
(c) $(-\alpha) v=\alpha(-v)=-(\alpha v)$ for all $\alpha \in F$ and $v \in V$.
(d) $\alpha v=0 \Rightarrow \alpha=0$ or $v=0$.
2. Let A and B be subspace of a vector space V. Prove that $A \cap B=\{0\}$ if and only if every vector $v \in A+B$ can be uniquely expressed in the form $v=a+b$ where $a \in A$ and $b \in B$.
3. Find the linear transformation $T: V_{3}(R) \rightarrow V_{3}(R)$ determined by the matrix $\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4\end{array}\right]$ with respect to the standard basis $\left\{e_{1}, e_{2}, e_{3}\right\}$.
4. Let $T: V \rightarrow W$ be a linear transformation. Prove that $\operatorname{dim} V=\operatorname{rank} T+$ nullity T.
5. Let V be a vector space of polynomials with inner product given by $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$. If $f(t)=t+2$, and $g(t)=t^{2}-2 t-3$, find $\langle f, g\rangle$.
6. Let V be a finite dimensional inner product space and let W be a subspace of V. Prove that $\left(W^{\perp}\right)^{\perp}=W$.
7. Let f be a symmetric bilinear form defined on V and let q be the associated quadratic form. Prove that $f(u, v)=\frac{1}{4}[q(u+v)-q(u-v)]$.
8. Let G be a group and let L be the set of all subgroups of G. In L we define $A \leq B$ if and only if $A \subseteq B$. Prove that L is a lattice.

SECTION B - $(5 \times 10=50$ marks $)$

Answer any FIVE questions.
9. Let V and W be vector spaces over a field F. Let $L(V, W)$ represent the set of all linear transformation from V to W. Prove that $L(V, W)$ itself is a vector space over addition and scalar multiplication defined by $(f+g)(v)=f(v)+g(v)$ and $(\alpha f)(v)=\alpha f(v)$.
10. Let V be a vector space over a field F. Let $S, T \subseteq V$. Prove that
(a) $\quad S \subseteq T \Rightarrow L(S) \subseteq L(T)$
(b) $L(S U T)=L(S)+L(T)$.
11. If W is a subspace of a finite dimensional vector space V, show that $\operatorname{dim} \frac{V}{W}=\operatorname{dim} V-\operatorname{dim} W$.
12. Let W_{1} and W_{2} be subspaces of a finite dimensional inner product space. Prove that
(a) $\left(W_{1}+W_{2}\right)^{\perp}=W_{1}^{\perp} \cap W_{2}^{\perp}$.
(b) $\quad\left(W_{1} \cap W_{2}\right)^{\perp}=W_{1}^{\perp}+W_{2}^{\perp}$.
13. Apply Gram - Schmidt process to construct an orthonormal basis for $\mathrm{V}_{3}(R)$ with the standard inner product for the basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ where $v_{1}=\{1,-1,0\}, v_{2}=\{2,-1,-2\}$ and $v_{3}=\{1,-1,-2\}$.
14. Let V be a vector space over a field F. Prove that $L(V, V, F)$ is a vector space over F under addition and scalar multiplication defined by
(a) $(f+g)(u, v)=f(u, v)+g(u, v)$ and
(b) $(\alpha f)(u, v)=\alpha f(u, v)$, where $L(V, V, F)$ is the set of all bilinear form on V.
15. Reduce the quadratic form $x_{1}^{2}+2 x_{2}^{2}-7 x_{3}^{2}-4 x_{1} x_{2}+8 x_{1} x_{3}$ to the diagonal form.
16. (a) Let B be a Boolean algebra. Show that $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime},(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}$ and $\left(a^{\prime}\right)^{\prime}=a$.
(b) In a Boolean algebra if $a \vee x=b \vee x$ and $a \vee x=b \vee x$ then show that $a=b$.

